Gait Recognition by Applying Multiple Projections and Kernel PCA
نویسندگان
چکیده
Recognizing people by gait has a unique advantage over other biometrics: it has potential for use at a distance when other biometrics might be at too low a resolution, or might be obscured. In this paper, an improved method for gait recognition is proposed. The proposed work introduces a nonlinear machine learning method, kernel Principal Component Analysis (KPCA), to extract gait features from silhouettes for individual recognition. Binarized silhouette of a motion object is first represented by four 1-D signals which are the basic image features called the distance vectors. The distance vectors are differences between the bounding box and silhouette, and extracted using four projections to silhouette. Classic linear feature extraction approaches, such as PCA, LDA, and FLDA, only take the 2-order statistics among gait patterns into account, and are not sensitive to higher order statistics of data. Therefore, KPCA is used to extract higher order relations among gait patterns for future recognition. Fast Fourier Transform (FFT) is employed as a preprocessing step to achieve translation invariant on the gait patterns accumulated from silhouette sequences which are extracted from the subjects walk in different speed and/or different time. The experiments are carried out on the CMU and the USF gait databases and presented based on the different training gait cycles. Finally, the performance of the proposed algorithm is comparatively illustrated to take into consideration the published gait recognition approaches.
منابع مشابه
Human Gait Recognition with 3D Wavelets and Kernel based Subspace Projections
Gait recognition can be regarded as a problem of uniquely representing spatiotemporal surfaces associated with a person’s walking pattern in an efficient manner. In this paper, we describe the approach of using projections of such surfaces onto subspace spanned by appropriate axes using a single framework. Two new algorithms for gait recognition are presented which use projection on subspace of...
متن کاملObject Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملUniprojective Features for Gait Recognition
Recent studies have shown that shape cues should dominate gait recognition. This motivates us to perform gait recognition through shape features in 2D human silhouettes. In this paper, we propose six simple projective features to describe human gait and compare eight kinds of projective features to figure out which projective directions are important to walker recognition. First, we normalize e...
متن کاملPalmprint Recognition by Applying Wavelet Subband Representation and Kernel PCA
This paper presents a novel Daubechies-based kernel Principal Component Analysis (PCA) method by integrating the Daubechies wavelet representation of palm images and the kernel PCA method for palmprint recognition. The palmprint is first transformed into the wavelet domain to decompose palm images and the lowest resolution subband coefficients are chosen for palm representation. The kernel PCA ...
متن کاملA Cumulant-Based Method for Gait Identification Using Accelerometer Data with Principal Component Analysis and Support Vector Machine
In this paper a cumulant-based method for identification of gait using accelerometer data is presented. Acceleration data of three different walking speeds (slow, normal and fast) for each subject was acquired by the accelerometer embedded in cell phone which was attached to the person's hip. Data analysis was based on gait cycles that were detected first. Cumulants of order from 1 to 4 with di...
متن کامل